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Abstract We study self-similarity in one-dimensional probabilistic cellular automata
(PCA) using the renormalization technique. We introduce a general framework for alge-
braic construction of renormalization groups (RG) on cellular automata and apply it to
exhaustively search the rule space for automata displaying dynamic criticality.

Previous studies have shown that there exists several exactly renormalizable deterministic
automata. We show that the RG fixed points for such self-similar CA are unstable in all
directions under renormalization. This implies that the large scale structure of self-similar
deterministic elementary cellular automata is destroyed by any finite error probability.

As a second result we show that the only non-trivial critical PCA are the different ver-
sions of the well-studied phenomenon of directed percolation. We discuss how the second
result supports a conjecture regarding the universality class for dynamic criticality defined
by directed percolation.

Keywords Renormalization · Cellular automata · Self-similarity · Universality · Directed
percolation

1 Introduction

Elementary PCA, i.e. (1 + 1)-dimensional, nearest neighbor, two-state probabilistic cellular
automata, are often used to model an interesting class of critical dynamic behavior referred
to as directed percolation. It has been conjectured [4] that any process which

– has a continuous phase transition from a fluctuating phase into a unique absorbing state;
– is characterized by a positive one-component order parameter near this transition;
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– has only short range interactions; and
– has no unconventional attributes such as additional symmetries or quenched randomness.

belong to the directed percolation universality class. In this paper we introduce a general
renormalization framework to explore whether there are other PCA that show critical be-
havior, which would contradict the stated conjecture.

In a recent study, Israeli and Goldenfeld [5] explored possible coarse-graining of ele-
mentary deterministic cellular automata (CA). The coarse-graining procedure consisted of
projections of the state space where configurations in local neighborhoods of states was
mapped onto a coarse-grained neighborhood, or to be more precise a coarse-grained light
cone. It was shown that many of the elementary cellular automata can be mapped onto each
other by this procedure. Especially 21 of the 256 elementary CA are self-similar and can be
mapped onto themselves by an appropriate projection. It is interesting to ask in which sense
the dynamics of these CA can be viewed as critical. In this paper we address this ques-
tion using real-space renormalization of PCA, which includes the usual CA as deterministic
limits.

2 Renormalization of Probabilistic Cellular Automata

We first formulate the dynamics of cellular automata in terms of matrices. We then present
an algebraic framework for renormalization of probabilistic cellular automata on square and
diamond lattices.

2.1 Matrix Formulation of Cellular Automata

Cellular automata (CA) are discrete deterministic dynamical systems with local interactions,
i.e. a collection of cells {σi(t)} situated on a lattice together with a local update rule. Each
cell can be in one of a finite number of states {0,1, . . . , S − 1}. The update rule is applied
synchronously and independently on every neighborhood of cells. The concept is easily gen-
eralized to probabilistic cellular automata (PCA) by considering non-deterministic update
rules.

For our purposes, it is advantageous to use a spin representation and consider a matrix
form of the update rule. Each local state, or spin, is represented by a vector s of length S

corresponding to a column of the identity matrix in RS . Collections of spins are represented
by tensor products of their constituents, {σ1, σ2, . . .} ↔ (s1, s2, . . .) = s1 ⊗ s2 ⊗ · · ·.

The size of the neighborhood influencing each spin depends on the dimension and topol-
ogy of the lattice. Let the number of such spins be denoted z. We then define the matrix P

as the S × Sz matrix which corresponds to the local update rule for a single cell. For deter-
ministic cellular automata, each entry of P is 0 or 1, but in the PCA generalization P is a
probability matrix (Pij ∈ [0,1] and

∑
i Pij = 1). An update of a spin is achieved by the ma-

trix product where P operates on the influencing neighborhood, si(t + 1) = P · ∏〈i,j 〉 sj (t)

where the product should be interpreted in terms of tensor products and 〈i, j〉 denotes neigh-
boring cells.

As an example, consider Wolfram’s elementary cellular automata [11]. They have two
states which we represent with (1,0) if σ = 1 and with (0,1) if σ = 0. Further, they
are defined on a square lattice so every spin si has three influencing preceding neighbors
(s ′

i−1, s
′
i , s

′
i+1). This neighborhood is a vector of length 23 and P is a 2 × 23 matrix. As P is

a probability matrix, its first row has eight parameters P1 = (p1,p2, . . . , p8) ∈ [0,1]8 and its



974 E. Edlund, M. Nilsson Jacobi

second consists of the corresponding 1 − pi . For example, P1 = (0,1,0,1,1,0,1,0) corre-
sponds to rule 90 in Wolfram’s nomenclature [11] as can be seen by successive application
to the different spin configurations.

To coarse-grain an automaton updates of larger neighborhoods must be considered. These
aggregated update rules also have matrix representations, possible to express in terms of P .
Let the matrix that updates n neighboring spins from their combined neighborhood be de-
noted by Pn. As the update rule is applied independently and in parallel over the lattice,
Pn can be constructed in terms of a kind of tensor product of P ’s. However, the neighbor-
hoods will overlap so the usual tensor product cannot be used, easily seen e.g. by considering
the dimensions of P ⊗ P ⊗ · · · ⊗ P .

Consider two adjacent spins on a square lattice. They have three influencing neighbors
each in their nearest neighbor regions. Only four of these are unique as the neighborhoods
overlap by two spins. Define a 2-overlapping tensor product for 2 × 23 spin matrices A and
B as

〈s ′
1, s

′
2 | A �2 B | s0, s1, s2, s3〉 = 〈s ′

1 | A | s0, s1, s2〉 · 〈s ′
2 | B | s1, s2, s3〉 (1)

in Dirac’s vector notation [9]. With this notation P2 can be expressed in terms of the basic
update matrix as P �2 P .

More generally, we define a k-overlapping tensor product for spin matrices A and B as

〈s ′
1, . . . , s

′
n1+m1

| A �k B | s0, s1, . . . , sn2+m2−k〉
= 〈s ′

1, . . . , s
′
n1

| A | s0, . . . , sn2〉 · 〈s ′
n1+1, . . . , s

′
n1+m1

| B | sn2−k, . . . , sn2+m2−k〉, (2)

where A (B) describe the transition of n2 (m2) spins into n1 (m1) ones. The matrix repre-
sentation of the update rule for n adjacent spins, Pn, on a lattice where adjacent spins have
k overlapping neighbors is now given by a product of n P ’s, Pn = P �k P �k · · · �k P .

2.2 Coarse-Graining of Probabilistic Cellular Automata

The matrix representation can be used to calculate both coarse-graining and renormalization
of probabilistic cellular automata on square and diamond lattices. We denote the matrices
defining the dynamics by P � and P 	 respectively. The coarse-graining transformation con-
sists of a projection of a block of N cells into a single cell in space as well as a stroboscopic
coarse-graining in time. This combination is needed to keep the structure of the light cone.
The projection can be written as a S × SN matrix �. The goal is to calculate the effective
dynamics on the coarse-grained level, which also has an S × Sz matrix representation P̃ .

The transformation has two steps. First we define a cellular automaton on blocks of cells
on the original lattice. This CA will have an alphabet of size SN and each time step will
correspond to N time steps of the original CA. We denote the dynamics on the block level by
Q� on the square lattice and by Q	 on the diamond lattice. This first step is straightforward
and there are no formal requirements on the dynamics. In the second step, the alphabet over
blocks of states is projected onto the original one-block alphabet, which results in a coarse-
grained version on the same form as the original CA. For the second step to result in a well
defined dynamics, i.e. for the state of the automaton at time t + 1 to be independent of the
state at time t − 1 given the state at time t (the Markov property), there are restrictions on
both the projection and the dynamics [5, 6]. These restrictions define the coarse-graining and
can be formulated in terms of the matrices � and P . Later when we discuss renormalization
the coarse-graining restrictions are only approximately fulfilled.
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Fig. 1 Left: light cones, defined as the influencing neighborhoods of a given cell, on a square and a diamond
lattice. Right: blocks used for a coarse-graining of a PCA on a square lattice

Due to the 45◦ angle of the light cones on the lattices, n adjacent spins will have n + 1
influencing neighbors on a diamond lattice and n + 2 on a square lattice. For a block size of
N , the block CA corresponds to N time steps from 3N onto N spins on the original lattice
for the square case. Figure 1 illustrates the case N = 2. On a diamond lattice the influencing
neighborhood consists of 2N spins. The transition matrix for the block CA, denoted by Q,
can be concisely expressed in terms of the overlapping tensor product of equation (2). On
the diamond lattice we have

Q	 = P 	
N · P 	

N+1 · · ·P 	
2N−1 (3)

and on the square lattice Q� = P �
N · P �

N+2 · · ·P �
3N−2. The description of P �

N in terms of P �

was given in the previous section as an tensor product with overlap 2. On the diamond lattice
the overlap of neighborhoods of adjacent spins is 1, so the corresponding P 	

N are given by
P 	

N = P 	 �1 P 	 �1 · · · �1 P 	.

S × S
P̃ 	

S

SN × SN
Q	

�⊗�

SN

�
(4)

For a projection � to form a well defined coarse-grained dynamics, the diagram (4) must
commute in the sense that a time evolution through Q followed by a projection should give
the same result as a projection followed by a time evolution through P̃ , see [6] for details.
Algebraically this means that there must exist an S ×S2 matrix P̃ 	, representing the coarse-
grained dynamics, such that

� · Q	 = P̃ 	 · (� ⊗ �) (5)

and � ·Q� = P̃ � · (�⊗�⊗�). If P̃ 	 exists, then (5) can be solved using a pseudoinverse1

(� ⊗ �)+,

P̃ 	 = � · Q	 · (� ⊗ �)+, (6)

and correspondingly P̃ � = � · Q� · (� ⊗ � ⊗ �)+ on the square lattice.

1The pseudoinverse used is the Moore-Penrose pseudoinverse for rectangular matrices, i.e. for a n×m matrix

A with m < n: A+ = (AT A)−1AT .
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2.3 Renormalization of Probabilistic Cellular Automata

When applying renormalization theory one is usually much less concerned with using exact
coarse-grainings. As long as a projection which preserves the symmetries of the problem
is used one usually gets correct quantitative behavior. With this in mind it is natural to
use (6) as an approximate effective dynamics, ignoring that (5) is usually not fulfilled. The
renormalization group transformation RN is then given by (3) and (6) as

RN(P 	) ≡ � · P 	
N · P 	

N+1 · · ·P 	
2N−1 · (� ⊗ �)+ (7)

on the diamond lattice and

RN(P �) ≡ � · P �
N · P �

N+2 · · ·P �
3N−2 · (� ⊗ � ⊗ �)+ (8)

on the square lattice.
To improve the approximation, we note that the pseudo-inverse can be interpreted as

a back-projection from the coarse-grained description to the corresponding states in the
original automaton. If diagram (4) commutes then any such state will result in the same
subsequent dynamics. If it does not then the way in which the back-projection is performed
affects the results of the renormalization as a given rule may produce some configurations
with higher frequency than others. The back-projection thus should be done in a way which
is consistent with the dynamics of the original automaton. This is achieved by weighing with
the stationary distribution over different states.

Constructing a diagonal matrix D�
eq with the stationary distribution over 3N − 2 spins on

the diagonal gives us the weighed renormalization transformation on the square lattice

RN(P ) = � · P �
N · P �

N+2 · · ·P �
3N−2 · (� ⊗ � ⊗ � · D�

eq)
+. (9)

On the diamond lattice the stationary distribution is taken over 2N −1 spins and the resulting
equation is

RN(P ) = � · P 	
N · P 	

N+1 · · ·P 	
2N−1 · (� ⊗ � · D	

eq)
+. (10)

Denote the stationary distribution over M adjacent spins by sM
eq . Since the stationary

distribution must be invariant under the time evolution, it must satisfy the equation

sM
eq = PM · sM+l

eq (11)

with l = 1 on the diamond and l = 2 on the square lattice. This is not a closed equation as
determination of the stationary distribution for M spins require knowledge of the distribution
for M + l spins. The solution lies in approximating the latter in terms of the former. This
amounts to disregarding statistical correlations over neighborhoods larger than M spins. The
natural approximation2 is given by

(s1, s2, . . . , sM+1)eq = (s1, . . . , sM)eq · (s2, . . . , sM+1)eq

(s2, . . . , sM)eq
(12)

on the diamond lattice and

(s1, s2, . . . , sM+2)eq = (s1, . . . , sM)eq · (s2, . . . , sM+1)eq · (s3, . . . , sM+2)eq

(s2, . . . , sM)eq · (s3, . . . , sM+1)eq
(13)

2It can be shown that this is the maximum entropy distribution over M + 1 spins such that it reduces to the
distribution over M spins when summed over the first or last spin.
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on the square lattice. To calculate the stationary distribution of for example 3N − 2 spins
to order M we solve (11) using (13) and then sum over spins to arrive at s3N−2

eq . This gives
increasingly better approximations for larger M , taking larger statistical correlations into ac-
count. This defines a hierarchy of approximations, where the unweighed inverse projections
of equations (7) and (8) can be seen as zeroth order.

We conclude this section by recalling some of the key points of renormalization theory.
An introduction to the subject is found in for example [2]. As macroscopic observations of
a system correspond to a severely coarse-grained version of the microscopic dynamics the
fixed points of the transformation are central. For the cellular automata these are the ones
described by a matrix P ∗ such that

RN(P ∗) = P ∗. (14)

By repeated application of the renormalization transformation, each reducing length
scales of the system, it is easy to see that for example the correlation length at a fixed point
is either zero or infinite. The latter corresponds to a system at criticality with self-similarity
at all scales. The former corresponds to bulk phases of the system where the dynamics are
either pure noise, corresponding to a high-temperature limit, or frozen, corresponding to a
low-temperature limit. These are known as trivial fixed points.

For systems close to a fixed point the behavior is governed by the eigenvalues of the
Jacobian of the renormalization transformation as can be seen by linearizing around the
fixed point,

P̃ = P ∗ + J (P ∗) · δP + O((δP )2), (15)

where J (P ∗) is the Jacobian of RN . Components of δP which lie along eigenvectors of
J with corresponding eigenvalues |λ| < 1 will shrink. Such directions are called irrelevant
as they eventually disappear after repeated applications of RN . In the same way, directions
along which the eigenvalues of J have magnitude larger than one are called relevant as such
deviations grow exponentially and drive P away from P ∗. The relevant degrees of freedom
are associated with control parameters that must be tuned to achieve critical behavior.

The universality observed among widely disparate systems close to criticality stems from
the fact that it is the same eigenvalues (i.e. the same control parameters) which drives the
systems near the fixed point, regardless of their respective microscopic dynamics. These
eigenvalues determine the critical exponents of systems near their critical point.

2.4 Searching for Renormalizable Models

One of the advantages of cellular automata is their discreteness and simplicity. They allow
us to explore all possible (non-stochastic) renormalization projections for a given block size.
We can search the space of PCA for fixed points of each such projection and in principle
exhaustively enumerate all renormalizable cellular automata in a given class. This provides
a program for determining the possibility of self-similarity in any given class of cellular
automata.

We here restrict our exposition to projections of blocks of size two. This is motivated
by the fact that renormalization theory shows that the actual change in length scales does
not matter as long as the projection preserves the relevant symmetries of the problem. In
this setting this means that the only possible difference between renormalizations of blocks
of size two and larger ones lies in possibilities of new symmetry preservations. For exam-
ple, a block two projection cannot constitute a proper majority rule such as is usually used
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Fig. 2 The renormalization flow for the automata in the diamond lattice for two planes in the hyper cube.
To the left is the Domany-Kinzel [1] plane, characterized by p2 = p3 and p4 = 0. To the right is the plane
characterized by p1 = 1 − p4 = 1, showing the compact directed percolation line

for renormalization of Ising models. This does not seem to be a problem as shown by the
example of compact directed percolation. This universality class shows up even for projec-
tions not respecting its 0 ↔ 1 symmetry. We have done some investigations of projections
of blocks of size three without finding any new results.

For a given probabilistic cellular automaton we want to find fixed points of the corre-
sponding renormalization transformation, P ∗ such that P ∗ = RN(P ∗). Here the advantage
of our approach is apparent: using the approximation of (6) and its analog on the square lat-
tice we have polynomial equations in the parameters of P . This allows us to quickly search
for self-similar automata.

On a diamond lattice with blocks of size two the problem is a system of four polynomial
equations in four variables of degree five. We were able to use polynomial solving software
to completely solve this system for each of the 14 possible non-trivial projections of two cells
into one. We used the hierarchical scheme introduced in Sect. 2.2 to refine the approximation
for the resulting fixed points which do not fulfill the commuting condition of diagram (4).

On the square lattice the corresponding system has eight equations of degree eight in as
many variables. Our software cannot solve this on available hardware. Instead we perform
local searches for fixed points seeded with random initial conditions for each of the possible
projections.

The algebraic method of (6) is fast, but may miss self-similar automata which are fixed
points only with the weighing on the stationary distribution included. Using a fine grid
(21 points for each dimension, i.e. 214 points in total), we compute the vector field induced
by (10) on the diamond lattice and find its zeros for each of the 14 non-trivial projections.
Figure 2 shows the field for the projection

� =
{

(0,0) → 0
(0,1), (1,0), (1,1) → 1

(16)

for two planes of the relevant hyper-cube [0,1]4.
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3 Existence and Stability of Self-Similar Automata

3.1 Overview of Results

Our search shows three kinds of fixed points of the renormalization scheme. They are:

– Trivial fixed points—e.g. rules in which there is no correlation in time, most of them
corresponding to high temperature limits.

– Deterministic CA—rules for which all transition probabilities are 0 or 1. These are shown
to be unstable and correspond to low temperature limits.

– Non-deterministic CA—rules with stochastic time evolution, corresponding to finite crit-
ical temperatures. All such solutions are shown to belong to the directed percolation (DP)
universality class or the compact DP class.

As shown in previous work [5], there is a fairly large number of deterministic automata
which coarse-grain themselves. Perhaps a bit surprising, there is no such abundance of non-
deterministic ones. In fact, our search finds no non-trivial non-deterministic CA admitting
a renormalization with block size 2, apart from models of directed percolation or compact
directed percolation.

It is known [4] that the critical manifold for directed percolation ends in a point at which
the universality class changes, called compact directed percolation. The change of univer-
sality class is due to an extra 0 ↔ 1 symmetry. Our purely algebraic method ((7) and (8))
cannot find this point, but when weighing is included ((9) and (10)) it is identified correctly.
We see that extra symmetry present at this point that changes its universality class is not a
problem for the two block projections, which indicate their generality.

3.2 Trivial Fixed Points

In renormalization theory, trivial or weakly coupled fixed points are points where there are
no correlations (or trivial correlations in a frozen system).

One example of such a point in our context is an automaton with constant probabili-
ties over all preceding configurations, Pki = Pkj , ∀i, j . For such automata the spins behave
independently and each take a value k with some probability Pk = p ∈ [0,1]. It is not sur-
prising that we find such fixed points for all projections. For projections which assigns more
configurations to one state than to another, the trivial fixed points are p = 0 and p = 1, cor-
responding to rules 0 and 255 for the elementary automata. For the majority rules with ties
broken in different ways, all p ∈ [0,1] gives fixed points, while for example the projection

� =
{

(0,0), (1,1) → 0
(0,1), (1,0) → 1

(17)

has fixed points for p ∈ {0,1/2,1}.
More generally, any rule where the probabilities only depend on a single spin in the pre-

ceding neighborhood is a trivial point as there are no spatial interactions in such an automa-
ton. No non-deterministic automata fitting this description not belonging to the specific case
handled above are found as fixed points of any of the renormalizations. However, a number
of deterministic automata does; more on those below.
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Fig. 3 The self-similar structures generated by deterministic automata are destroyed by any finite noise.
Time evolution from a single seed for Wolfram’s rule 60 without (left) and with perturbations of 0.4% in p2
and p3 (middle and right). Cyclic boundary conditions are used

3.3 Deterministic Fixed Points

Coarse-graining of deterministic elementary cellular automata is studied extensively in [5]
and also discussed in [6]. Among the central results in [5] is a diagram showing how different
such CA coarse-grain each other. Our method reproduce all 21 fixed points of this diagram
as expected. We can also analyze these fixed points using renormalization theory.

First of all we see that most self-similar CA are trivial fixed points in the sense described
above. The exceptions are rules 60, 90, 102 and their 0 ↔ 1 symmetries as well as rule 150.
These rules correspond to critical systems as they build fractal structure at all scales.

However, these fixed points are degenerate in another sense. Analyzing the Jacobian
of the renormalization transformation at these points, we find that all allowed directions
(directions which does not cause the probabilities to leave the interval [0,1]) are associated
with eigenvalues |λi | > 1. This means that these CA are critical only in the deterministic
limit and at large scales the self-similar structure is destroyed by any stochastic component
of the dynamics. Figure 3 shows an example of this: the time evolution of rule 60 builds
a Sierpinski triangle but a small perturbation to any of the parameters breaks up the large
scale structure.

3.4 Non-deterministic Fixed Points

The only non-deterministic fixed points found by our algebraic method are models of di-
rected percolation (DP). On the diamond lattice we find only one, known as the Domany-
Kinzel automaton [1]. This point exists in three versions on the square lattice. Figure 4
shows time evolutions of these automata slightly above criticality started from single seeds.



Renormalization of Cellular Automata and Self-Similarity 981

Fig. 4 Time evolution from a single seed for the three different models of directed percolation found as fixed
points of the renormalization on a square lattice. The automata shown are slightly above criticality. Cyclic
boundary conditions are used

The fixed point on the diamond lattice of the unweighed renormalization of (6) is given
by P 	

1 ≈ (0.8389,0.6096,0.6096,0). This is for the projection

� =
{

(0,0), (0,1), (1,0) → 0
(1,1) → 1

(18)

The projection can be understood as one that preserves the absorbing state of the percola-
tion process. Running the automaton shows that this zeroth order approximation underes-
timates the critical point. We therefore refine our result by using the hierarchy described
in Sect. 2.2. Iterating (11) combined with (12) until convergence and weighing the inverse
projection with this distribution gives an implicit equation for a fixed point. We regard the
fixed point condition as an optimality criterion and use a simple direct search method, com-
pass search [7], to minimize the error. Truncating the hierarchy at M = 6 we get the value
for the critical point P 	

1 ≈ (0.9447,0.5923,0.5923,0), which turns out to be in better agree-
ment with the correct one as is confirmed by simulations.3

We note that while the percolation of the Domany-Kinzel automaton has been studied
using a renormalization scheme similar to ours in e.g. [10], the larger generality in our
scheme allows us to see explicitly that the automaton is only a fixed point if there exists a
completely absorbing state, as shown both by the roots of the polynomials and by an analysis
of the eigenvectors at the fixed point.

On the square lattice there are three directed percolation fixed points, shown in Fig. 4.
The non-symmetric fixed points correspond exactly to the Domany-Kinzel automaton if the

3There are several methods to estimate the critical point for numerical directed percolation models. We plot
log-log diagrams of the occupancy at time t . For a description and discussion, see [3].
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square lattice is tilted 45◦ to give a diamond lattice. In other words, the rules are independent
of either the left or right preceding neighbor,

P �
1 ≈ (0.8389,0.6096,0.6096,0,0.8389,0.6096,0.6096,0) (19)

for the right skewed automaton in the zeroth approximation and similarly for the left skewed
one. The corresponding refined approximations are given by the values given above for the
diamond lattice. The symmetric fixed point is situated at

P �
1 ≈ (0.8073,0.7679,0.3957,0.2227,0.7679,0.7206,0.2227,0) (20)

and a refinement with a hierarchy truncated at M = 6 gives the point

P �
1 ≈ (0.9807,0.9522,0.1623,0.0711,0.9522,0.9267,0.0711,0). (21)

We note that the zeroth approximation also has a set of spurious fixed points above the
critical point. These disappear when higher order approximations are used.

When we include the weighing systematically in the search for the diamond lattice we
find a line of fixed points belonging to the compact directed percolation class. These au-
tomata are on the form

P 	
1 = (1,p,1 − p,0) (22)

for any p ∈ [0,1]. These possess an extra 0 ↔ 1 symmetry compared to the directed per-
colation processes, placing them in another universality class. For p = 0.5 the automaton
describes a annihilating random walk with the boundaries interpreted as particles. Tuning
the parameter biases the walk in the corresponding direction until, at p = 1 or 0, the deter-
ministic limit is achieved and the particles move in straight lines.

Studying the eigenvalues of the transformation around the compact directed percolation
points shows that they have no irrelevant directions. They have an exactly marginally rele-
vant direction along the line defined by (22) as any movement along this line will result in a
new fixed point being visited.

The aim of the method presented in this paper is not to calculate the critical exponents for
any particular universality class. For completeness we nevertheless examine the possibilities
of such a calculation for the directed percolation fixed point. We know that the spatial corre-
lation length scales algebraically close to the critical point as ξ ∼ t−ν⊥ . Through renormal-
ization theory we know that ν⊥ = lnb/ lnλ where λ is the largest eigenvalue of the Jacobian
of the renormalization transformation and b is the length scaling (equal to the block size N

in our case) [2].
For the zeroth order approximation we can do the differentiation analytically. For higher

order approximations we calculate the Jacobian numerically. Table 1 shows the obtained val-
ues for different orders of the approximation when applied to the Domany-Kinzel automaton
at the point reported above. They should be compared with the value ν⊥ = 1.096854(4) re-
ported in [4]. Note that already using neighborhoods of size four comes within 10% of the
correct value. However, the convergence for larger neighborhoods is extremely slow. This is
most likely due to the geometric scaling of the correlations close to criticality. This makes
the method unsuitable for accurate determination of the exponents.

Using the same procedure for the fixed points on the square lattice gives qualitatively
similar results but with even slower convergence. This is not surprising since the model in
this case is embedded in a large space of confounding variables.



Renormalization of Cellular Automata and Self-Similarity 983

Table 1 The largest eigenvalue
λ1 and corresponding critical
exponent ν⊥ for the
renormalization transformation
with different orders of
approximation M

M λ1 ν⊥

0 1.297 2.667

4 1.994 1.004

6 1.986 1.011

7 1.984 1.011

8 1.984 1.012

9 1.983 1.012

4 Summary and Discussion

In this paper we use renormalization theory to show that the deterministic self-similar ele-
mentary cellular automata correspond to low temperature limits where any finite probability
of errors destroys correlations at large enough scale. This is analogous to the situation for the
one-dimensional Ising model which lacks large scale structure for all T > 0. The situation
is quite different in for example the two dimensional Ising model where the critical point
is defined by only two relevant parameters, temperature and the external field. Large scale
structures are insensitive to other perturbations of the microscopic dynamics, corresponding
to irrelevant directions of the renormalization transformation. This is why the Ising model
defines a universality class and can reproduce the scaling behavior of a large variety of ex-
perimental systems near criticality. We conclude that the self-similar deterministic CA do
not define any interesting universality classes and that any perturbation of their dynamics
destroys large scale fractal structure. Our analysis shows that there are limits on large scale
(space-time) structure generated by elementary cellular automata with finite error probabil-
ity. Lindgren [8] showed that the space correlations of automata is destroyed by uniform
noise. Our method generalizes this conclusion to space-time correlations and noise in any
part of the rule of the automaton.

By systematically exploring both the space of probabilistic cellular automata and renor-
malization transformations we show that the only non-trivial universality class among two-
state, one-dimensional nearest-neighbor automata is directed percolation. This results can
be seen as further evidence for the directed percolation conjecture discussed in the introduc-
tion, i.e. that any critical system describable by two-state nearest neighbor PCA belongs to
the same universality class as DP. Our results provide no definite proof of the conjecture as
only deterministic projections with a relatively limited range have been considered.
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